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Abstract We propose the development of a special-
purpose computer for the Hartree–Fock method, which gen-
erally suffers quartic time scaling. We conduct a qualitative
assessment of the various computational components, with a
focus on electron repulsion integrals (ERI), and consequently
map various architectural traits to the various computational
components. A quantitative analysis of one component is also
presented. We go on to mull over the idea of mixed preci-
sion arithmetic. These analyses will aid the practical devel-
opment of a specialized high performance multi-architecture
computer.
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1 Introduction

Over the last few decades there has been a considerable shift
away from carefully architected supercomputers towards
large-scale distributed memory computational clusters com-
prised of commodity building blocks. Even large US super-
computing facilities have not escaped this trend. The
arguments for generality (particularly savings in cost and
development time) are well established, and undermine the
feasibility of any proposal that involves an exclusively appli-
cation specific solution.

However, the growing gap between theoretical peak per-
formance and achieved real-world application performance
on general-purpose computer systems provides an impetus to
consider new strategies that will better serve the needs of sci-
entific numerical computation. Such a strategy is the concept
of a science-driven system architecture (SDSA), proposed by
IBM and several leading US national computing laboratories
[1]. A key aspect of this strategy is for systems to be deliber-
ately designed from the ground up (as opposed to expedient
reactionary adaptation of existing systems) based on a careful
evaluation of the specific needs of the target application. In
this paper, the target application is computational quantum
chemistry (CQC).

The principle goal of quantum chemistry is to solve
Schrödinger’s equation:

Ĥ� = E� (1)

and specifically we target the commonly employed Hartree–
Fock (HF) method. Frontiers in drug discovery, nanotech-
nology, and many other areas, demand order-of-magnitude
improvements in computational power to extend large-scale
quantum chemistry simulation and modeling capabilities into
these domains. CQC has long been frustrated by the inabil-
ity to practically tackle molecules larger than a few hundred
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atoms at most. This is due to the O(N 3) – O(N 4) problem
size scaling, and much beyond this for post-Hartree-Fock
methods.

This scaling applies to the number of electron repulsion
integral (ERI) function calls, and computation of each ERI is
non-trivial. In fact, CQC suffers from a “double-whammy”
– (1) the large number of ERIs to compute, and (2) each ERI
is relatively computationally demanding.

Our approach hinges on the hypothesis that a special-
purpose processor architecture may efficiently exploit far
more parallelism inherent in the computation, beyond the
capabilities of mainstream general-purpose computers. Our
intention is that through sheer parallelism our solution will
yield order-of-magnitude performance improvements over
mainstream general-purpose parallel systems, in-spite of the
implicit clock-speed and logic area penalties associated with
low-volume custom systems.

It should come as no surprise that we derive some inspira-
tion for our approach from the very successful GRAvity PipE
(GRAPE) line of special-purpose processors [2]. The general
goal of the GRAPE project was to accelerate astrophysical
N -body computations, and is also applicable to molecular
dynamics. The Protein Explorer project [3] proposes to uti-
lize a large number of GRAPE processors to construct a
special-purpose high performance molecular dynamics com-
puter. We envision a similar solution for the CQC problem,
although in this paper we focus on a single-node.

In this paper we present a comprehensive analysis of the
target problem and consequently map the constituent sub-
tasks to optimal but practical architectures and architectural
traits guided by the design-space approach espoused by Sima
et al. [4]. We illustrate that some recent trends in mainstream
computing fail to address the needs of the problem — for
instance, there is a growing realization that architectures that
depend upon multi-level memory cache structures for per-
formance have reached the limit of manageable complexity
and associated power consumption, while at the same time do
little to enhance the throughput of the computation. The com-
puter architectures of the last 60 years are well entrenched,
however as far as we are aware there has not been a compre-
hensive architectural exploration of the overall HF method
with a particular focus on ERI.

This paper is organized as follows. We begin with a dis-
cussion of why a special-purpose approach is warranted. We
then go on to a brief commentary on supercomputing para-
digms as they relate to this project. We then provide back-
ground information on the HF method and ERI computation
in Sect. 4. A review of previous architectural designs are
reviewed in Sect. 5. In Sect. 6 we lay out our design-space
analysis of the overall HF computation, as well as a more
in-depth analysis of ERI computation. In Sect. 7 we present
a quantitative analysis of one of the stages of the ERI algo-
rithm. A discussion on numerical precision is presented in

Sect. 8. Finally we mention future work avenues and primary
conclusions.

2 Motivating a special-purpose architecture

General-purpose commodity microprocessors are undergo-
ing a major transition in their internal architectures, embrac-
ing parallel processing in the form of multi-core (multiple
processors) and multi-threading. Much of the research for
this was done over a decade ago but has only just become
mainstream as the clock rates and power consumption limits
of traditional von Neumann processors have been reached. It
is unlikely that the peak performance of these new micropro-
cessors will be reached given their complex internal memory
structures in particular.

Commodity processors in the form of application accel-
erators still provide apparently attractive options if we are to
believe the claims for peak performance. Two of the more
noteworthy are the Cell Broadband Engine (Cell BE) [5] and
the ClearSpeed CSX multithreaded array processor [6]. We
will discuss their potential later but most of us are now well
aware of the pitfalls of peak performance figures.

We believe that a ground-up application directed approach
to processor design is warranted, and likely to be rewarding.
Our approach is to make the processor fit the application, and
in this regard we derive much inspiration from Joel Emer’s
relaxing constraints philosophy [7].

The make the processor fit the application mantra leads
us to field-programmable gate arrays (FPGAs), at least for
initial prototyping (we will touch on this more in the next
section). Use of FPGAs is made much easier by system inte-
grators, such as with Cray’s XD-1 system. It is likely that
we will make use of such a system to ease development of
the prototype, however we will not embrace any constraints
imposed by these existing systems (such as availability of
bandwidth and off-chip high-speed RAM) early in the archi-
tecture development because doing so will undermine the
make the processor fit the application mantra. Accepting such
constraints early is likely to be counter-productive anyway,
as new or updated systems emerge, bringing new intercon-
nection topologies and resource/bandwidth allocation with
them. This is true even for FPGAs, where even within product
lines there is significant differentiation between individual
FPGA series (eg. Xilinx Virtex-4 FX vs. LX vs. SX, each of
which is optimised for a different application scope [8]). This
leads us to another contribution of our ground-up approach:
our analyses can help influence the evolution of systems by
proposing desirable architectural shifts.

Perhaps most ambitious of all is the possibility that our
system will lead to the spawning of a general-purpose sys-
tem with wide applicability to a range of supercomputing
applications. The most famous recent example of this would
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Fig. 1 Supercomputing paradigms, from the perspective of this project

be the development of the IBM BlueGene platform, which
was significantly influenced by the QCDOC special-purpose
quantum chromodynamics computer [9,10].

We are committed to the construction of the system that
we propose. At some point we will have to accept platform
and technology constraints in order for the system to mate-
rialise, however we chose to delay the acceptance of such
constraints, in other words we will initially perform an opti-
mistic design-space exploration, which is more likely to
reveal opportunities for breakthrough performance. Once we
have identified these opportunities, we will consider
constraints and how to overcome or avoid them.

3 Capacity computing or capability computing?

At the outset, one may consider which supercomputing par-
adigm one should pursue. However, we first consider several
realities that would dictate the nature of the beast that we
construct:

• Algorithmic advances will continue to be a major source
of progress in ab initio computation—the solution must
be able to incorporate such advances.

• In-house supercomputing is a luxury few can afford—the
solution should be something that supercomputing cen-
ters can easily embrace and serve out to remote users.

• Fully custom integrated circuit (IC) fabrication is very
expensive. Although we have not ruled this out, we have
strong reason to consider the use of programmable logic
devices instead, specifically FPGAs, which have been
applied to many supercomputing problems such as lattice
quantum chromodynamics [11] and molecular dynam-
ics [12]. FPGAs have the principal advantage of rapid
development cycles of weeks rather than years for cus-
tom implementations, and a performance curve which is
now growing more rapidly than commodity processors
based on custom ICs [13] (Fig. 1).

We do not propose to do away with conventional com-
putational clusters—the intent is to augment them with the

proposed accelerator hardware, via high performance inter-
connects. In this, one can simply retrofit this accelerator
into existing installations. It is most likely that the imme-
diate implementation will be based on FPGAs. In addition
to an accelerated performance curve [13], an approximate
calculation shows that a Xilinx Virtex-5 FPGA is already
capable of outperforming a 3.0 GHz Intel Xeon processor
between 1.5 and 5 times depending on the mix of float-
ing-point operators [14]. Although projecting performance
of applications on FPGAs is not an exact science, it is clear
that there is potential for performance gains. Further accen-
tuating our optimism regarding FPGAs is that industry in
general is becoming increasingly supportive of the recon-
figurable computing paradigm (the current-generation man-
ifestation of which are FPGAs). The recent announcement
by Hewlett-Packard regarding field-programmable nanowire
interconnect (FPNI) technology suggests gains of a factor of
eight in FPGA density using current fabrication lines [15].
The increase in functionality offered for large FPGA dies is
substantial. It is also broadly accepted that the clock rates for
FPGAs will continue to increase.

Nevertheless the current work is about architectural
options, and we are not committed to implementation tech-
nologies, whether full-custom ASIC on one extreme or com-
modity FPGA on the other. The present work is a study on
special-purpose computer architecture. Let us now consider
the potential gains extracted from such a study.

3.1 Dimensions of scalability

There are at least two distinct and important facets of scala-
bility to which our work can promote large-scale computa-
tions. The first facet is reduction of computation-time, which
is the main thrust underscoring all supercomputing projects,
regardless of whether the motivating paradigm is capacity
computing or capability computing. Simply put, if one can
crunch numbers quicker, one can:

1. do a greater number of simulations in a given period of
time (larger capacity).

2. attack larger problems within a feasible period of time
(larger capability).

The second facet is improved precision. With regards to
computer architecture, the problem of precision (and indeed
accuracy) is tied to floating point error accumulation. This
problem is often ignored by practitioners of large-scale
numerical computation, which is disturbing because the
validity/confidence of conclusions based on values resulting
from these computations is not known. Large-scale prob-
lems—i.e. high capability problems—are particularly at risk,
because very wide reduction operations may significantly
accumulate floating-point errors. Further compounding this
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problem is the reasoning presented in [16] that larger prob-
lems (as characterized by larger basis sets and higher pro-
portion of heavy elements) in fact require energy term values
of greater precision to allow chemically meaningful conclu-
sions to be formed—in other words, larger problems require
better precision, but the computed values are in fact of poorer
precision.

Unfortunately, discounting the possibility of major algo-
rithmic breakthroughs, strictly from the perspective of
computer architecture, computation-time and floating-point
precision are at odds with each other. Improving accuracy—
for example by increasing floating-point wordsize (and thus
increasing precision)—or incorporating interval/affine arith-
metic mechanisms to provide accuracy guarantees would
consume time and/or logic resources that could otherwise
be devoted to higher parallelism and therefore quicker com-
putation. However, we are mindful of one simple fact: there
is limited need for accuracy improvement/validation of com-
putational results without the ability to compute larger prob-
lems to begin with, and thus one should initially place a higher
degree of importance on improving computation-time—
though obviously we shall not wantonly sacrifice precision.

Let us return to our original question—what is the under-
lying goal: capacity computing or capability computing? The
issues confronting us are illustrated in Fig. 1. In the context
of this particular project, we can reframe this question as
follows: how much importance is placed on floating point
precision? In fact, we actually do not have to answer this
question, because of our particular strategy.

3.2 Methodology

The electronics industry now depends for its survival on ease
of design and the ready ability to produce high-performance
low-power systems quickly within months of conception to
product. While their efforts are largely directed at high vol-
ume embedded applications, the design tools and the devices
they target suit our needs. It is the availability of modern sys-
tem-level design tools such as SystemC [17] that encourages
us to pursue this project where where a decade ago others
met with considerable frustration [18].

We will initially partition our design efforts into two basi-
cally independent levels: (1) system-level architecture, and
(2) numerical functional unit specification. Any contempla-
tion of capability computing will be driven by the latter, and
the system-level architecture design of the processor will be
unaffected.

We are able to partition in this manner due to rapid strides
in digital design methodology and tools, which allow very
high abstraction levels while giving us the ability to defer
low level design decisions, such as the precision and range
of arithmetic units and indeed the numerical representation
used, until very late in the design, and to change these deci-

sion at will with little or no cost. Changes in technologies
are dealt with automatically within the design tools—e.g. we
can leverage evolutionary growth in FPGA logic capacity
by specifying an increase in the number of functional units,
and the tools will carry out the low-level tasks of allocating
datapaths and placement of the various units within the FPGA
fabric.

Inevitably, the question arises: are these automated tools
capable of high performance implementation? The indus-
try drivers are now enormous and we believe the answer is
yes. We will show as much in future communications. In
this paper, however, the focus is on big-picture architectural
issues.

4 The Hartree–Fock algorithm

A comprehensive introduction to the theory behind the HF
method is beyond the scope of this paper, but we will develop
sufficient context to justify decisions and design motivations
discussed.

This section is organized as follows. First we present an
overview of the HF method, and elaborate the computational
bottleneck. Then we quickly expand on the notion of basis
functions that are fundamental to the method as it is the
input data. We go on to deal with the computation of the
ERIs. Finally, we briefly touch on post-FH electron correla-
tion computations.

Before addressing the details of the HF method, one addi-
tional scope limiting decision to be discussed, concerning the
computation vs. storage of the ERI results. HF is an iterative
method, however the computation of the ERIs themselves are
identical in each iteration. This means one can simply com-
pute the ERIs at the start of the computation, store all the
results, and read the ERI results from storage in subsequent
iterations. Often time this is considered the default or con-
ventional SCF method (and so it is just referred to as the de
facto SCF method, but for the sake of clarity we will call
this the stored-integral approach). However, as previously
mentioned, a very large number of ERIs are typically required
– O(N 4). For example, a relatively small molecule Naphtha-
lene (C10 H8), computed using the 6-311G basis set already
requires 1GB of storage.1 The factor limiting the maximum
problem size quickly becomes storage capacity. This sen-
timent is shared by the workers of the Tensor Contraction
Engine project [20], among others.

Since the ultimate desire is to pursue computations for
much larger molecular systems, the goal is to establish meth-
ods that are highly scalable. One strategy would be to accept
potential penalties such as recomputation. Guided by this

1 Single-point energy RHF/6-311G computation with 298 basis func-
tions, performed using GAMESS [19].
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philosophy, we embrace the direct approach to such calcu-
lations (as proposed in the seminal paper by Almlöf et al.
[21]) instead of the stored-integral approach. With the direct
approach, ERIs are recomputed each iteration, and because
the ERI results may be reduced to a O(N 2) data structure as
they are obtained (see Sect. 4.1 for elaboration), one avoids
the need to store O(N 4) ERI results. The obvious trade-off is
the need to do Niterations × NE RI integrals, however Niterations

is typically reasonably small, usually less than 20 [22].
Furthermore, direct-SCF places pressure upon process-

ing power whereas stored-integral-SCF places pressure upon
storage components and interconnects. In general progress in
the former has significantly outpaced progress in the latter.
This has led to the observation that on many conventional
systems (including commodity clusters) direct-SCF outper-
forms stored-integral-SCF.

4.1 Self-Consistent Field Method

Recall Schrödinger’s equation (Eq. 1). The individual com-
ponents have the following significance:

– Ĥ – the Hamiltonian operator; the transformation
function.

– � – the wavefunction; eigenvector.
– E – the energy; eigenvalue.

The Hartree–Fock method is a numerical procedure used
to solve the Schrödinger equation for multi-electron atoms
or molecules described in the fixed-nuclei approximation
(i.e. the Born-Oppenheimier approximation) by the elecron-
ic molecular Hamiltonian. Because of the complexity of the
differential equations for any but the smallest of molecules,
the problem is usually impossible to solve analytically, and
thus, the numerical technique of iteration is used. The method,
referred to as the self-consistent field (SCF) method, is iter-
ated until a set of convergence criteria is met. Figure 2 depicts
the procedure.

The ERIs and density matrix are required to form the two-
electron component of the Fock matrix which is subsequently
diagonalized to obtain the molecular wavefunction, which
encapsulates much valuable information about the molecule.
Henceforth we will refer to the two-electron component of
the Fock matrix as the G matrix. The computation of the G
matrix is described programatically in Fig. 3.

To further support our claim that ERI and G matrix con-
struction should be the subject of our attention, consider pro-
filing results for two test cases presented in [23] which we
summarize in Table 1. These figures clearly suggest that as
problem size increases, the ERI and G matrix construction
dominates the computation time of the overall SCF algo-
rithm. Similar findings are presented in Table 1 of [18]. For
the Morphine example in Table 1, which is a relatively small

Fig. 2 SCF procedure. Dashed blocks indicate computations that need
to be done only once, while solid blocks indicate computations that are
done for all SCF iterations, i.e. until the energy convergence criteria has
been satisfied. The bolded blocks are the focus of the present work. Order
of complexity specified in each block indicates the storage requirements
of the resulting data structure(s). There are many possible variations of
the procedure (particularly the kernel in the two-electron components
block); what is depicted here is merely one possible variation, though
the general flow indicated is fairly consistent for all variations

f or ( i =0 t o N){
f o r ( j =0 t o N){

G[ i , j ] = 0 ;
f o r ( k=0 t o N){

f o r ( l =0 t o N){
temp =2∗ERI ( i , j , k , l )−

0 .5∗ ERI ( i , k , j , l )−
0 .5∗ ERI ( i , l , k , j ) ;

G[ i , j ]+= temp∗D[ k , l ] ;

Fig. 3 Two electron component construction. This code is simplified
for clarity, and applies to the Restricted Hartree–Fock case. With the
direct approach, the ERI subroutine would calculate the ERIs; with the
stored-integral approach, the ERI subroutine would access a stored-ERI
4-index array

molecule, the maximum possible speedup one can achieve is
a factor of 50. Furthermore the maximum speedup roughly
scales linearly as a function of basis size — we discuss this
in Sect. 6.
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Table 1 ERI and G matrix construction computation time [23]

Molecule Basis Functions ERI and G matrix time

Nitrobenzene 91 87% of total

Morphine 124 98% of total

4.2 Basis functions

The representation of the molecular system in the above
numerical procedure is a set of approximate one-electron
orbital functions. For atoms, these are typically the orbi-
tals for the hydrogen atom, while for a molecule, the initial
approximation is a linear combination of atomic orbitals
(LCAO) specially formulated in terms of a Slater determinant
to satisfy the anti-symmetric nature of a molecular
electron system. The basis set (LCAOs) is the set of math-
ematical functions, which are finite in number and orthog-
onal in construction. The basis functions, in simple terms,
represent probability clouds describing the distribution of
the electrons. Various basis sets are used in practice, most
of which involve the use of Gaussian functions, as descri-
bed below. Whenever discussing the performance scaling of
quantum chemistry computations, N almost always refers to
the number of basis functions describing the molecule. With
this measure, assuming no further approximations, problems
involving 1,000 basis functions are typically very large for
most considerations, although not infeasible with current
computer architectures. For the purpose of our work, we
target a problem size of >10k basis functions.

The basis functions have a Gaussian form η = C(x −
Rx )

nx (y − Ry)
ny (z − Rz)

nz e−ζ(r−R)2
, and this is called a

Gaussian-type orbital (GTO), also often referred to as a
primitive function or Gaussian primitive. The characterizing
elements for each function η are:

– Center coordinate – r :{x,y,z} [Real × 3]
– Exponent – ζ [Real]
– Angular momenta – nx , ny, nz [Int × 3]
– Coefficient – C [Real]

The angular momenta are an important component of the
GTO in the sense that the computation time of individual
ERI depend on the angular momenta of the four input GTOs.
The physical significance of the angular momenta is related
to the electron configuration over “spdf...” shells.

Typically, a set of GTOs are combined linearly, or con-
tracted, to form a single contracted-GTO (CGTO). The level
of contraction K specifies the number of primitive functions
collected into the single contracted function—higher K gen-
erally leads to higher accuracy. The CGTOs χ are the basis
functions. Each CGTO consists of a collection of GTOs,

however all the GTOs share a common center coordinate
and common angular momenta. A CGTO may be thought of
as a container with the following elements:

– Center coordinate – r : {x, y, z}
– Angular momenta – nx , ny, nz

– K partial GTOs (pGTO), which only consist of a coeffi-
cient and an exponent.

The ERI computation involves a quartet (4-tuple) of CGTO,
where each CGTO may have a different level of contraction
K . A typical range for K is 1 → 6. This is all summarized
diagrammatically in Fig. 4. To get a rough idea of the corre-
lation between molecule size and basis set size, please refer
to Table 2.

4.3 Electron repulsion integrals

The input data for the ERI function has a Gaussian form.
Integration over Gaussian functions allows the application
of several mathematical rules that simplify the computation,
such as the Gaussian product rule [22]. Mathematical deri-
vations are outside the scope of this paper; interested readers
are referred to the reference lists of the papers cited within
this section. Rather, in this section we describe the broad
characteristics common to many ERI algorithms, and then
elaborate one specific ERI algorithm in detail.

The computation time for each ERI is determined by the
level of contraction and the angular momenta associated with
each CGTO, with higher values implying higher necessary
computational effort. Most ERI algorithms consists of two
broad steps:

– Initial “bootstrap” step.
– Recurrence step.

As far as possible, complex arithmetic operations (such as
exponential and square root evaluations) are limited to just
the bootstrap step, which often executes in constant time.
Conversely, the recurrence step—which may require up to
O(N ′2) time, where N ′ is related to the angular momentum
of the input GTOs—is limited to multiplication and addition
operations as far as possible. Several salient points regarding
the computational requirements of ERIs, common to all ERI
algorithms, are:

– All ERI are independent of each other, therefore, all ERIs
may be computed in parallel.

– The computation time for individual ERIs may vary sub-
stantially.

The selected ERI algorithm is the Rys quadrature
[24–26], which is an efficient yet generally applicable ERI
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Fig. 4 ERI input. Typical range
for K is 1 → 6. All
pGTO/CGTO components are
real values except the angular
momentum {nx, ny, nz} triplet,
which are unsigned integers

CGTO[1]

Gaussian Center Angular Momentum pGTO[1] ... pGTO[K[1]]

x y z nx ny nz

ERI Input

... CGTO[4]

Coefficient Gaussian Exponent

Table 2 Basis set size of various molecules (631** basis)

Molecule Basis functions

Water, H2O 25

Nitrous oxide, N2O 45

Butane, C4H10 110

Nicotine, C10H14N2 250

Fullerene buckyball, C60 900

Chlorophyll a, C55H72O5N4Mg 1,339

Azurin II (PDB ID:1DYZ) 14,395

algorithm.2 The implementation of the algorithm is also com-
pact and relatively simple, which are desirable traits for a
dedicated hardware implementation—in fact a dedicated
hardware implementation of this algorithm was suggested
as far back as 1990 by Auspurger et al. [26], who specifi-
cally cite the concise/simple nature of the algorithm (and
especially their particular implementation) as making it a
good candidate for specialised hardware. Like many other
ERI algorithms, Rys quadrature consists of a bootstrap stage
and a recurrence stage. In addition, there is also a roots and
weights generation stage.

Rys quadrature is a form of Gaussian quadrature, involving
a N ′ point numerical quadrature using Rys polynomials—
specifically the roots u and weights W of a polynomial of
order N ′, where N ′ is related to the total angular momen-
tum of the four GTOs. The standard polynomial generation
techniques typically employed for Gaussian quadratures may
be employed, and the discretized Stieltjes [27] method is
known to be especially good (in terms of computational effi-
ciency and accuracy) for Rys quadrature. However, because
the angular momentum is low in practice (we target N ′ up to

2 Some algorithms are limited to only low angular momentum basis
functions, which means the algorithm is only applicable to “sp” shells
for example.

13, which is sufficient for most practical computations3) it is
possible to partially tabulate values to generate the required
roots and weights with less computational effort. Therefore,
we will not elaborate on polynomial generation methods here
but will cover this in a future communication.

The Gaussian primitive ERI problem is expressed as:

[ηµην |ηλησ ] ≡ 2(ρ/π)1/2
N ′∑

α=1

Ix (uα)Iy(uα)Iz(uα)Wα (2)

Beginning with the bootstrapping, one obtains:

Ix (0, 0, 0, 0, u) = π√
AB

exp

(
− ζiζ j

ζi + ζ j
(xi − x j )

2

− ζkζl

ζk + ζl
(xk − xl)

2
)

(3)

Recall that ζ are the exponents associated with the GTOs.
The evaluation of A and B are given in Eqs. 20 and 21 of
[25]. Next the constants B00, B10, B ′

10, C00 and C ′
00 (see

Eqs. 41–43 of [25] or 12–14 of [26] for details) are evaluated,
requiring the quadrature root u. However, u is not required
in subsequent stages, so the u dependence can be omitted in
expressions of the I-factors.

The following set of recurrence relations is then computed:

Ix (n + 1, 0, m, 0) = nB10 Ix (n − 1, 0, m, 0)

+ m B00 Ix (n, 0, m − 1, 0)

+ C00 Ix (n, 0, m, 0) (4)

Ix (n, 0, m + 1, 0) = m B ′
10 Ix (n, 0, m − 1, 0)

+ nB00 Ix (n − 1, 0, m, 0)

+ C ′
00 Ix (n, 0, m, 0) (5)

Ix (ax , bx , m, 0) = Ix (ax + 1, bx − 1, m, 0)

+(xb − xa)Ix (ax , bx − 1, m, 0) (6)

Ix (ax , bx , cx , dx ) = Ix (ax , bx , cx + 1, dx − 1)

+(xd − xc)Ix (ax , bx , cx , dx − 1) (7)

3 If we later find we need to increase N ′ beyond 13, there would exist
a greater degree of parallelism in the computation, which would place
greater gains on the table. Unfortunately it would also mean a greater
level of imbalance to deal with—see Sect. 6.2 for clarification.

123



140 Theor Chem Account (2008) 120:133–153

2iR

a+b

c+d

4iS

b

d

I(0,0,0,0)

I(a,b,c,d)

3iS

Fig. 5 Rys quadrature recurrence relations. This figure depicts the
manner in which the three stages—2-index recurrence (2iR), 3-index
shift (3iS) and 4-index shift (4iS)—are related. Note that a, b, c, and
d are related to the angular momentum of the four input GTOs, and a
typical maximum value for any of the four non-negative integers is 6

f o r ( q=0 t o CGTO1.K){
f o r ( r =0 t o CGTO2.K){

f o r ( s =0 t o CGTO3.K){
f o r ( t =0 t o CGTO4.K){

p e r i (CGTO1. xyz , CGTO1. c o e f f s [ q ] ,
CGTO1. angmom , CGTO1. exp 1 [ q ] ,
CGTO2. xyz , CGTO2. c o e f f s [ r ] ,
CGTO2. angmom , CGTO2. exp 1 [ r ] ,
CGTO3. xyz , CGTO3. c o e f f s [ s ] ,
CGTO3. angmom , CGTO3. exp 1 [ s ] ,
CGTO4. xyz , CGTO4. c o e f f s [ t ] ,
CGTO4. angmom , CGTO4. exp 1 [ t ] ) ;

Fig. 6 ERI with CGTO. The idea is to simply iterate over the pGTO
contained in each of the four CGTO. Recall that typically K ≤ 6

Equations 4 and 5 together populate a discrete two-dimen-
sional plane, the width and breadth of which are a function
of total angular momentum (we elect to limit the maximum
dimensions to 13 × 13); this stage is referred to as the
2-index recurrence (2iR). Next, a set of reduction operations
is performed to effectively “shift” the dependence from two
indices to all four indices. Equation 6 essentially reduces val-
ues along partial strips of the 2iR plane; this stage is referred
to as the 3-index shift (3iS). Finally, Eq. 7 performs a reduc-
tion to similarly “shift” the dependence to all 4 indices, and
is termed the 4-index shift (4iS). Figure 5 illustrates the com-
putation of the recurrence relations. Observe the workload
dependent nature of the 3iS and 4iS stages. The “footprint”
of the 3iS reduction tree set is input-dependent in terms of
dimensions and is always aligned to the lower right corner of
the 2iR plane, but the dimensions of the 2iR plane itself are
also workload-dependent. The width of the 4iS reduction tree
depends on the width of the 3iS “footprint”. This is repeated
for the y and z axes.

Thus far, only the Gaussian primitives (GTOs) have been
dealt with. The contracted functions (CGTOs) must also be
considered. To do this, one may simply iterate over all the
pGTO contained within a CGTO, as depicted in Fig. 6.

4.4 Electron correlation

The usefulness of our system would be limited if electron
correlation computations were not also accelerated. We have
focussed primarily on Hartree-Fock computations because it
is a necessary first step, however it would not be difficult to
expand the scope of the machine to also serve post-HF com-
putations. This is because even with post-HF computations,
ERI are the hot-spot, and in general there are computational
similarities between HF and post-HF methods.

Let us consider the four-index transformation, an impor-
tant component of electron correlation computations, which
scales O(4N 5) with basis size [28]. The four-index trans-
form operation requires four terms with similar form to the
following:

[iq|rs] =
N∑

p=1

Tip[pq|rs] i, q, r, s = 1, ..., N (8)

Once again the heart of the problem is generating, evaluating,
and contracting integrals. The requirements of this stage are
therefore similar to the requirements of HF. We will conduct
more rigourous analysis of different post-HF methods in a
later communication.

5 Architectural reviews

There is considerable literature on parallelization of the HF
algorithm for mainstream parallel computers (and readers are
referred to [29] for a review on this). With reference to the
present work, we consider only those that are immediately
relevant.

Here we briefly discuss general-purpose processors (note
that this does not limit us to mainstream processors) and the
application specific ERIC processor which, as far as we are
aware, is the only special-purpose processor for ERI reported
to date.

5.1 General-purpose processors

The Cell Broadband Engine (Cell BE) [5] supports only
single-precision arithmetic directly, which is, as we shall
emphasise in Sect. 8, insufficient for the target application.
It’s performance on double-precision arithmetic is relatively
poor.4 Williams et al. have proposed microarchitectural
improvements that would significantly improve double pre-
cision floating point arithmetic performance by a factor of

4 See Table 2 of [5]: for dense matrix multiplication, performance for
single precision is 204.7 GFLOPS while performance for double preci-
sion is 14.6 GFLOPS, a difference of more than an order of magnitude.
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5 for dense matrix multiplication [5], but it remains to be
seen if these modifications will materialise. This leads to
our first motivating point: commodity architectures tend to
chase commodity applications. While it is a probable that
several architectural variants of the Cell may emerge, these
are likely to be motivated by high-volume commodity appli-
cations such as media and network processing, video games,
and consumer electronics which are adequately served by
single-precision arithmetic. It seems unlikely that additional
functionality on the Cell will be directed at double-precision
aritmetic.

Unlike the Cell BE, the ClearSpeed CSX accelerators are
targeted squarely in the scientific computation market with a
claimed peak performance of 25 GFLOPS double-precision
[6]. It is our view, however, that the 64bit wide memory inter-
face on these multithreaded array processors may be limiting.
The fixed architecture of ClearSpeed family does still require
programmers make the application fit the processor.

The sheer number of ERIs presents challenges, but cou-
pled with the total parallelism between individual ERIs, there
are also opportunities. One such opportunity is the capacity
for latency hiding. This may be easily exploited with a mul-
tithreaded architecture such as TERA MTA [30]. The TERA
architecture has its origins in the dataflow class of computer
architectures that are known theoretically to be able to exploit
all concurrency in an application and are latency tolerant.
To achieve this, such architectures require an abundance of
concurrency in their workloads. The overall architecture is
a symmetric shared memory multiprocessor with deep pipe-
lines and no conventional cache structure.

For the TERA architecture the ERI computations may be
readily expressed as independent threads and sub-threads of
computation. As the computation of the numerous ERIs does
not proceed lock step, contention on relatively infrequent
memory accesses is spread over time as the TERA automat-
ically adapts to the applied load.

There has been relatively little recent success in exploiting
vector processing. The amount of data-level parallelism
inherent in each ERI computation is limited, frustrating vec-
torization of ERI. This appears to have been demonstrated by
recent studies. Yahiro and Gondo [31] report speedup due to
vectorization slightly higher than 2, while Obara and Saika
[32] report speedups of around 5 utilizing their ERI method
on a vector machine. This is not to say that these claims are
contradictory, but rather that speedup is relative to the nature
of the computation and its implementation. In any case, it
is apparent that the problem does not immediately vectorize
very well [33], though certain transformations such as inte-
gral sorting do seem to provide better results [34], and these
shall be the subject of further work.

Nevertheless, there may still be a place for vector process-
ing in the system. Matrix diagonalization is also an important
part of the overall SCF workflow and vector processing is

highly applicable there, as noted in [35,36]. Matrix diago-
nalization is outside our scope of interest but in light of this,
a vector processing machine may be an ideal candidate for a
host system, with the ERIs farmed out to slave nodes. This
would make a substantial difference for small to medium
sized computations.

The mapping of the target application to a clasic MIMD
system based on the T800 transputer processor is presented
in [23]. The evaluation of each ERI executes sequentially on
each node. In addition, each node computes an element of
the G-matrix, which is subsequently transferred back to the
host system. This straight-forward arrangement is something
we will emulate. The main point differentiating our proposal
against other conventional MIMD systems is the design of
the individual node, wherein we intend to exploit more con-
currency (specific to the needs of the particular application)
than previously designed mainstream architectures are capa-
ble of. This goal was also shared by the workers of the ERIC
project. We review their efforts in the next section.

5.2 The ERIC special-purpose processor

The ERI Computer (ERIC) is the only known system specifi-
cally constructed to compute the ERIs and thus deserves men-
tion. This processor was developed at Kyushu University, in
collaboration with industry and government partners, and
is comprehensively documented in [18,37,38]. ERIC was
implemented with 0.13µm process technology and operates
at 200 MHz—a similar clock rate to last generation FPGAs.
The Obara-Saika (OS) ERI algorithm was selected, which is
similar to the Gauss-Rys quadrature algorithm.

As presented in [37], OS consists of two stages: an ini-
tial integral calculation stage (the bootstrap stage), and a
recurrence calculation stage. The bootstrap stage has limited
instruction level parallelism (ILP) and requires evaluation of
complex floating-point arithmetic functions. The recurrence
stage has a high degree of ILP, and basically only requires
floating-point multiplication and addition. Since there are
two distinct stages with distinct computational requirements,
ERIC consists of two distinct parts, namely an Initial Inte-
gral Calculation Engine (IICE) and a Recurrence Calcula-
tion Engine (RCE). Both parts share a bus to memory and
communications ports.

The IICE is basically a MIPS RISC core augmented with
specialized arithmetic units. These include units for evalua-
tion of:

– Square root.
– Exponential.
– “Error function” required for a Taylor series.

as well as division, addition, and multiplication. Unfortu-
nately, for this stage of the computation, the authors find that
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their current implementation is substantially slower than a
Pentium 4 [38]. However, they estimate the power efficiency
of their implementation is 1.5 times higher than the Pentium
4 [38].

Ideally, the RCE would consist of a large number of float-
ing-point multipliers and adders to leverage the large degree
of ILP available in this stage. However, the authors argue
that this would not be practical mainly because very wide
multiport register files are inefficient in terms of both area
and delay [37]. This problem is overcome by introducing
the notion of subengines. A subengine consists of a register
file, a load-store unit, and arithmetic units. The RCE con-
sists of multiple subengines, and resembles a VLIW archi-
tecture, and the authors prescribe 4 subengines within the
RCE [38]. This means the RCE has a maximum parallelism
of 4 multiply and add functions. Here too they find that their
implementation is substantially slower than the Pentium 4
[38].

The authors have identified the bottlenecks in their imple-
mentation [38]. A chief cause turns out to be the memory
bandwidth available to the RCE, which limits the IPC of a
single subengine to 0.07 on average. The authors propose sev-
eral improvements to the memory system that would improve
the power efficiency of the ERIC to 4.58 times over the
Pentium 4.

For a range of test computations, the authors report that
their implementation is >35 times slower than the Pentium
4 [38]. Although the authors express disappointment with
these results, important ground-breaking work has been illus-
trated such as algorithmic modifications. More importantly,
the authors have yet to report the performance of their over-
all parallel system—the cost efficiency of their solution has
not yet been reported: if the ERIC is favorable in this regard,
as opposed to the Pentium 4, it would be more appropriate
to compare a network of ERICs to a network of Pentiums
of equivalent cost, which may result in a more practically
accurate, and possibly more positive, assessment.

6 Architecture exploration

In Sect. 5 the overall computation was mapped onto sev-
eral general-purpose systems. One exception to this was the
ERIC processor that in principle involved a special-purpose
design. As far as we are aware, thus far (1) there has not been a
comprehensive architectural analysis of the overall computa-
tion, and (2) there has been no special-purpose work touching
specifically on the Rys quadrature ERI algorithm. In this sec-
tion we consider each computational component of the ERIs
and G matrix construction in a hierarchical manner, and we
attempt to propose architectural designs that are appropriate
for the computation yet practical from an implementation
stand-point [4].

It seems prudent to first consider the behavior of the over-
all HF program formally in the context of Ahmdal’s well
known Speedup Law:

Speedup ≤ 100

Serial % + Parallel %
Parallel nodes

(9)

The target subset of the overall algorithm, i.e. the paral-
lel/enhanced fraction of the program, grows approximately
with basis set size at O(N 4), while the matrix diagonaliza-
tion component which we suggest be run on a host system
generally scales as O(N 3)—this means that as problem size
increases, “Serial %” decreases and “Parallel %” increases,5

which means the maximum potential speedup increases as
well. This hypothesis will be validated with a “back-of-the-
envelope” analysis.

The two dominant aspects of the computation are the
generation of the Fock matrix—O(N 4)—and the diagonal-
ization of the Fock matrix—O(N 3). The two-electron com-
ponent aspect of the Fock matrix, i.e. the G-matrix, dominates
the Fock matrix construction time, and is in fact the sole
O(N 4) component (i.e. O(N 4) ERIs are computed). Thus,
the “Serial %” as a function of basis set size N may be expres-
sed as:

Serial % = 100 × O(N 3)

O(N 4) + O(N 3)
(10)

In order to determine the upper bound on potential spee-
dup, let there be infinite resources available: i.e. let “Parallel
nodes” → ∞. Speedup then becomes:

Max. Speedup = 100

Serial %
(11)

Substituting 10 into 11, it is apparent that the maximum spee-
dup roughly scales linearly with basis set size.

Recall Table 1. The maximum speedup for the 91 basis
function Nitrobenzene computation is 7.7 and the maximum
speedup for the 124 basis function Morphine computation
is 50. The findings presented in Table 1 of [18] indicate a
maximum speedup of 155 for a 427 basis problem. Extrapo-
lating these results linearly would clearly lead to very posi-
tive results about the potential gains on the table, though
one would perhaps be over-optimistic in doing so, since one
would be neglecting the effect of practical optimizations such
as symmetries and cut-offs. However, it does appear that
at least 2 orders-of-magnitude speedup is available just by
focusing on the construction of the G-matrix.

Nevertheless, the rest of the computation ought not to be
taken for granted. Fortunately some of the “Serial %” of the
algorithm may be hidden by overlapping communication and
computation between the host and the ASP. This will be elab-
orated on in Sect. 6.1.

5 This notion is empirically supported by Table 1.
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The first task at hand is to partition/allocate the compu-
tation between the host system and the application specific
processor (ASP), and a top-level architectural qualitative dis-
cussion. Then consideration of the individual components of
the computation, with a particular emphasis on the Rys quad-
rature recurrence relations, will be made.

6.1 Partitioning

There are many automated hardware/software co-design and
partitioning tools/methodologies available—far more than
can be cited to do such a thriving research area justice, though
[39,40] are examples of a well-established work and a rela-
tively recent work. In the present case, because we are willing
to go “back to the drawing board” as far as the implementation
of the algorithms are concerned the partitioning can be tack-
led from an analytical level, thereby avoiding encumbrances
of any existing code-base that could frustrate automated tools
and result in a sub-optimal solution. Similar frustrations have
been known to impede automatic vectorizing compilers [33].

Consider the overall computation of the G matrix (Fig. 3).
The data required to perform this computation are the O(N 2)

density matrix and the O(N ) basis set,6 and the output is the
O(N 2) G matrix. This involves O(N 4) ERI computations,
each of which yields a scalar value, which are then reduced
by way of a dot product computation with the density matrix
to yield a single component of the G matrix. First of all,
due to the sheer number of ERIs, all individual ERI com-
putations are done completely on the ASP, and therefore we
may elect to implement the complete program in Fig. 3 on
the ASP. Analytically one can see this requires O(N 4) com-
putation per iteration and the data transfer requirements are
limited to O(N 2) per iteration from host to ASP (the density
matrix) and O(N 2) per iteration from ASP to host (the G
matrix), yielding a computation vs communication ratio of
O(N 4)/O(N 2) ≈ O(N 2).7 This is similar to the computa-
tion vs communication ratio of the MD-GRAPE solution.

The data transfers can be scheduled in a manner that hides
communication latency as well as a portion of the sequential
computation performed on the host system. We can stream
the density matrix from the host to the ASP while com-
putations proceed on the ASP. Conversely, we can stream
G matrix elements from the ASP to the host as they are
computed; doing so allows the construction and subsequent
diagonalization of the Fock matrix to proceed on the host

6 The basis set is only loaded onto the ASP at the start of the HF pro-
cedure.
7 This has been confirmed experimentally by conducting a memory
trace analysis on the relevant computational partition in GAMESS [19];
details on our specific methodology will be provided in a future com-
munication.

Table 3 G matrix nested loop partitioning Comp./Comm

ASP loops Data in Data out ERI calls Computation/
communication ratio

i,j,k,l O(N 2) O(N 2) O(N 4) ≈ O(N 2)

j,k,l O(N 2) O(N ) O(N 3) ≈ O(N )

k,l O(N ) O(1) O(N 2) ≈ O(N )

l O(N ) O(1) O(N ) ≈ O(1)

inner kernel O(1) O(1) O(1) ≈ O(1)

concurrently while the rest of the G matrix is computed on
the ASP.

It is important to consider each of five possible options:

1. Computation of a single ERI—corresponding to the
inner-most code kernel.

2. Computation of a partial value of a G matrix element—
corresponding to the {l} loop.

3. Computation of a single G matrix element—correspond-
ing to the {k,l} loops.

4. Computation of a single G matrix column—correspond-
ing to the {j,k,l} loops.

5. Computation of the entire G matrix—corresponding to
the {i,j,k,l} loops.

We summarize our findings in Table 3. “Data in” is limited
only to the volume of density matrix data that is required in
each iteration; since the basis set data may just be loaded onto
the ASP once, it is not included in the “Data in” tally. “Data
out” refers to the volume of G matrix data that can be returned
to the host. When it comes to the computation cost, only the
number of ERI operations is counted because ERIs dominate
the cost of the G matrix computation. The metric of interest
is the “Computation/Communication” score which provides
a simple measure of the amount of work done relative to the
amount of data required to do the work: it is desirable to
maximize this score since it is far easier to provision more
memory than it is to provision high performance data transfer
between the host and the ASP.

Therefore assuming one is not subject to any other con-
straints such as memory availability, or the desire to run some
other computation within some loop level, the entire code in
Fig. 3 is computed on the ASP.

6.2 Top-level system view

As noted by other works reviewed in Sect. 5, the high degree
of function-level parallelism may be exploited through a
MIMD architecture. One might argue that a SIMD archi-
tecture is applicable; indeed with the vast majority of com-
putational resources being required for multiple instances of
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l[1]...l[P]

(P-wide  Memory)
Basis Set

ji k

ERI[1] ERI[P]ERI[2] ...
Host
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k,l
value value value

G-matrix Contraction

G[i,j]

...

ERI Dispatch

k,l k,l

l[P]l[2]l[1]
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Density Matrix

i,j,k
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Fig. 7 Two electron component computer, top-level view. Dotted
arrows indicate address buses, dashed arrows indicate data buses,
solid arrows indicate data/address buses, thick gray lines indicate wide
(multiple-word) data/address buses

the ERI program it would appear that a single instruction
stream is characteristic of the computational load. However,
one problem with ERI computation is the variability in com-
putation time for ERIs based on the workload (specifically
the angular momenta of the input GTO), and handling this
imbalance efficiently requires that each computational unit
be able to sequence the program execution autonomously
based on the particular ERI workload. Being faithful to the
design-space framework that we have adopted [4], systems
which incorporate local sequencing control are categorized
as MIMD.

As previously alluded to, we have chosen the same
assumptions as the Protein Explorer researchers [3], in that
the host system will consist of multiprocessor nodes inter-
connected to form a distributed-memory MIMD system and
that some number of the multiprocessor nodes will have local
access to the ASP.

We propose the top-level design depicted in Fig. 7. The
high degree of function-level parallelism is supported by rep-
licating ERI pipelines, with P replicated ERI computation
pipelines in the ASP. There are several practicalities that

f o r ( i =0 ; i<N; i ++){
f o r ( j =0 ; j<N; j ++){

G[ i , j ] = 0 ;
f o r ( k =0; k<N; k ++){

f o r ( l =0 ; l<N; l +=P ){
f o r ( p roc =0; proc< P ; p roc ++){

/ / compu te
temp [ p roc ]=

2∗ERI ( i , j , k , l + p roc )
0 .5∗ ERI ( i , k , j , l + p roc )
0 .5∗ ERI ( i , l +proc , k , j ) ;

tG [ p roc ]+=
temp [ p roc ]∗D[ k , l + p roc ] ;

}
/ / r e d u c e
f o r ( p roc =0 t o P ){

G[ i , j ]+= tG [ p ] ;

Fig. 8 Two electron component construction, inner-loop parallel. P
ERIs are computed in parallel

limit P , particularly memory bandwidth, therefore P � N ,
and P ERI computations can be issued in parallel. A loop
blocking/partitioning that is cache-friendly in the sense of a
conventional processor is not required in this case, so one
may simply break up the l-loop, as in Fig. 8.

MIMD systems come in two flavors: distributed mem-
ory and shared memory. Bear in mind that in this context
MIMD concerns the ASP itself, and not the configuration of
the host system. In this context, the memory access issue con-
cerns the streaming of basis set data into each ERI pipeline
and the reduction of ERI values with density matrix values
into the G-matrix. Both flavors are workable solutions, how-
ever a decision regarding which approach is “better” requires
more information—at the very least one would need to know
how many ERI pipelines will be instantiated. Fortunately,
this decision need not influence the design of the ERI pipe-
line itself, and one may guess (based on initial data) that the
number of ERI pipelines will be reasonably small (the order
of 10s at most). Furthermore, while feeding each ERI pipe-
line requires significant bandwidth due to the fact that the
CGTO quartet are quite large, this cost is mitigated by the
fact that one may feed identical CGTOs to each of the pipe-
lines—i.e. one may employ a shared broadcast bus, as the
MD-GRAPE does. The bandwidth required to contract ERI
values with density matrix elements into G-matrix elements
does scale with the number of ERI pipelines, but here the
data in question are just scalar real values. We will tentatively
(and marginally) favour a shared-memory implementation,
as it affords us a bit more flexibility and adaptability. We may
switch our preference to a distributed memory design later
when we have more information available; doing so will not
cost us anything.

Contemplating some aspects of the shared-memory
MIMD design space [4]:
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– Memory access: High throughput is required and high
latency is tolerable. In addition, a priori knowledge of
memory access patterns are available. As we wish to
maximize P , uniform memory access (UMA) would not
provide sufficient data bandwidth. However, one may
easily distribute memory accesses in a uniform manner
across memory banks to manage contention. Cache-
coherent non-uniform memory access (ccNUMA) and
cache-only memory access (COMA) are not necessary.
With properly organized data structures, NUMA should
provide the necessary scalability and performance requi-
red.

– Interconnection scheme: There are several layers in our
proposed system:
1. Basis set memory → ERI Dispatch.
2. ERI Dispatch → ERI processors.
3. ERI processors → density matrix memory and

G-matrix-Contraction.
We will first consider layers 1 and 2. Going on the assump-
tion that due to practicalities the inequality P � N
holds true, one expects that in general any one of the ijkl
indices will generate enough parallelism to comfortably
utilize the P-way replicated parallelism on the system
for N/P cycles. Therefore one may provision a shared
bus for 3 CGTOs, and P point-to-point buses (or perhaps
clusters of wide shared buses) to feed a unique CGTO
to each of the P ERI processors. As for 3, each ERI
pipeline produces a unique ERI result, therefore P point-
to-point buses ought to be provisioned to address the den-
sity matrix memory to obtain the corresponding density
matrix element Dkl , and subsequently for the ERI result
and Dkl to be fed into the G-matrix Contraction unit.

– Cache coherency: Host processors will stream the ERI
parameters to the ASP with G-matrix elements being
streamed back, after the ASP pipeline delays, for the
host processors to construct the Fock matrix and compute
the new density matrix. In practice this will most likely
be implemented through direct memory access (DMA)
transfers from memory. The host processor is thus respon-
sible for cache coherency which may be minimised using
appropriate access privileges to regions of virtual
memory.

Besides the ERI Processor pipelines, there are two note-
worthy components depicted in Fig. 7:

– ERI Dispatch (ERID): This unit issues CGTO quartet
to each ERI pipe. In order to reduce bandwidth usage,
the i, j and k CGTOs are issued to a shared bus that
is read by all P ERI pipes, while P unique l CGTOs
are issued directly to the P ERI pipes. Contracted basis
functions are “uncontracted” here; the ERI Dispatch unit
implements the functionality of the code in Fig. 6. This

unit will be semi-programmable so as to be able to sup-
port HF variations (i.e. UHF, RHF, etc.), which corre-
spond to differences in the exact procedure that ERI are
combined to form a G-matrix element. The unit program-
ming remains unchanged for the duration of the entire
SCF computation.

– G-matrix Contraction (GmC): This unit sums and scales
the generated ERIs to form the G-matrix, as in the inner-
loop of Fig. 8. A note-worthy aspect of this unit is that due
to the fact that ERI computation times are not uniform, the
G-matrix contraction unit must implement some manner
of asynchronous/wavefront/dataflow functionality.

These two components will receive more attention in a future
communication.

To fully saturate the ERI processor pipelines implies a
large number of of outstanding memory requests and conse-
quent high latency. An effective approach to overcome this
latency is to adopt a multithreaded approach to the ERI com-
putation. Multithreading tolerates large memory latencies as
long as the memory system has sufficient throughput. Similar
characteristics have been noted in high-performance network
processing, where a heavily pipelined memory hierarchy was
deemed appropriate [41]. In our case memory accesses pat-
terns are predictable and sequential, permitting a straight for-
ward pipelined interleaved memory [42]. The main limitation
is cost.

Furthermore, as each ERI is independent, there is no
inter-ERI-pipe synchronization/communication required.
However, there is an implied “barrier” at the GmC stage
where the ERI values are contracted, but we do not need
to stall ERI pipelines to enforce the barrier, instead we can
provision buffers at the GmC processor and allow the ERI
pipelines to proceed. We expect that over many cycles the
imbalance of individual ERI computations would average
across all the ERI pipelines—a similar observation was noted
with the TERA MTA [30] which we reviewed in Sect. 5.1.
The issue of variation in the cost of evaluating different ERI
was reviewed by Harrison et al. [29], where loss of efficiency
was ascribed to imbalances stemming from different individ-
ual ERI execution times. However, Harrison et al. observe, as
do Bolding et al. [30], that the efficiencies improve as mole-
cule size grows. This is due to the fact that with a sufficiently
large population of ERI tasks, and assuming that NE RI 	 P ,
there would be a balance in the distribution of ERI classes
to each ERI Processor. If adequate buffering is employed at
the ERI pipeline inputs and outputs there would be no need
to stall pipelines as a consequence of execution imbalance
between parallel pipelines waiting at the implied “barrier”.
A complementary approach would be for the ERI Dispatch
unit to perform explicit load balancing to reduce the aggre-
gate imbalance between ERI Processors, thus reducing the
required buffer capacity. Performing this load balancing
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would require the mapping of P ERI tasks to P ERI Pro-
cessors, based on the current load of each ERI Processor and
the cost of each ERI task.

The width of the buffers on both ends of the ERI Pro-
cessor is manageable: each GmC input buffer entry needs to
hold the ERI result and a density matrix element (2× real
values), while each ERI pipe input buffer entry need to hold
four GTOs (4× {5× real values + 3× integers}). Having
said that, the latter while manageable is certainly not trivial,
so we should strive to minimize the imbalance, or variance,
in computation time for each ERI because greater imbalance
results in larger buffering requirements. We need to illustrate
where and how the imbalances arise—we therefore turn our
attention to the ERI Processor.

6.3 Top-level ERI processor view

To achieve order-of-magnitude speedup over mainstream
general-purpose systems, at least one (preferably both) of
these two conditions must be satisfied:

– P must be large.
– The throughput of each ERI pipeline Tpipe must be large.

Both P and Tpipe would of course be constrained by resource
limits. The total throughput of the ASP is dictated by both
factors, i.e. TASP ∝ P×Tpipe, therefore as clearly anticipated
we seek to maximize both P (i.e. we want to maximize the
number of ERI pipelines) and Tpipe (i.e. we want to max-
imize the throughput of each ERI pipeline). Because P is
bandwidth limited, let us initially consider how to maximize
Tpipe.

We proceed by revisiting the chosen ERI algorithm—Rys
quadrature—which we discussed in Sect. 4.3. The compu-
tational workflow is depicted in Fig. 9, and the individual
components have the following function and requirements:

1. Preliminary bootstrapping (bP)—Several constants and
other values are computed here. This stage is a static
graph; there are no control requirements. The Gaussian
product rule is applied here, and the distance between the
two virtual centers X X is subsequently determined. The
number of required polynomials N ′ (which is related
to the angular momentum of the input GTOs) is also
determined here. A quantitative analysis of this stage is
presented in Sect. 7.

2. Roots and Weights (RaW)—This is the first of the two
stages that is responsible for the variance in the compu-
tation time for an ERI, because N ′ roots and weights are
generated (where N ′ ranges from 1 to 13). One may elect
to use a read-only look-up table (that may be shared by
multiple pipes) and interpolate the exact values required.
This will be subject to further investigation.

Preliminary Bootstrap

Roots & 
Weights

Contraction Unit

N’’ x roots
[N’’ x real]

N’’, XX
[int, real]

4 x GTO
[4 x [ {int x 3}, {real x 5} ]

4 x X-axis GTO
exponent, center,

& ang. mom.
[4 x [int,{real x 2}]]

Bootstrap Recurrence Array

Recurrence Array

2iR

3iS

4iS

5 x constants, I(0,0,0,0), rij, rkl
[8 x real]

I-factor
[real]

(Z)
(Y)

ERI
[real]

4 x GTO coeffs., constant
[5 x real]

N’’ x weights
[N’’ x real]

Fig. 9 Rys quadrature ERI workflow

3. Bootstrap Recurrence Array (bRA)—Several constants
and other values based on the quadrature roots are com-
puted here. This stage computes several values including
the initial value I (0, 0, 0, 0) required by the recurrence
relations part of the routine. Computation of an expo-
nential term is required here. This stage is a static graph;
there are no control requirements. This stage is required
for each of the three axes, and computes different values
for each of the N ′ roots.

4. Recurrence Array (RA)—This is the second and more
dominant source of variance in the computation time for
an ERI. Here, the recurrence relations (Eqs. 4 – 7) are
computed. Once again, the computation time variance
is due to angular momentum: the required “depth” of
the recurrence relations is due to angular momentum.
The computation of the recurrence relations is super-
quadratically dependent on angular momenta, as graph-
ically expressed in Fig. 5. This stage is subject to further
elaboration later in this section.
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5. Contraction Unit (CU)—Contract the three axis I-factors
(with GTO coefficients and other constants) to form a
single primitive Gaussian ERI, and then contract primi-
tive ERI into contracted ERI (i.e. the functionality depic-
ted in Fig. 6, though the iterations over pGTO contained
within a CGTO is effectively handled by ERID). This
stage is almost a static graph; there is a minimal con-
trol requirement, specifically the contraction accumula-
tion register needs to be reset before the start of a new
contraction.

A characteristic common to all stages is the reliance on float-
ing-point arithmetic.

Maximizing the throughput of each ERI pipeline Tpipe

means maximizing the number of ERI computations com-
pleted within a given period of time. This may be achieved
by doing one or both of the following:

– Minimize the average ERI computation time, t̄ERI.
– Maximize the average number of ERI computations

in-flight in the ERI pipeline in any given cycle, n̄ERI.

Let us consider the variance of the ERI computation time.
The upper-bound of the computation time varies with angular
momenta. The lower-bound of the computation time is due to
minimum angular momenta, and is basically fixed. If a hard
lower-bound is established, then minimizing t̄ERI increases
Tpipe, and it also effectively minimizes the variance in ERI
computation time, which reduces the required buffer lengths
in the ERI Processor inputs and GmC inputs. The variance is
due to the two components of the algorithm that have a work-
load-dependent amount of computation—RaW and RA.

We first pursue the minimization of t̄ERI. We start by con-
sidering the aspects of the algorithm that have a workload-
dependent amount of computation—specifically RaW and
RA.

Analytically one expects that the RA component would be
a greater computational hotspot than RaW (this assumption
has been validated empirically through performance profil-
ing). The RA workload scales quadratically with the nature of
the input (specifically the angular momenta) for a single sca-
lar result—i.e. O(N 2) work for 1 data output. One’s efforts
into t̄ERI minimization should therefore be initially focused
on the RA component. This will be discussed in Sect. 6.4.

Several arguments could be made for a multithreaded
architecture in the context of the application. First of all,
through sheer number of independent ERI, the application
inherently has much thread-level parallelism. Secondly,
though memory latencies are tolerable in the application
(and furthermore the access patterns are known a priori),
there are other forms of latency, such as pipeline data depen-
dencies. These are particularly relevant in the application
because of the floating-point computational intensity, and

floating-point arithmetic units typically have deep pipelines.
Through thread-level parallelism, one can avoid data
dependency hazards and achieve better utilization of floating-
point arithmetic units and other logic. This point is demon-
strated quantitatively in Sect. 7.

Contemplating some aspects of the multithreaded design
space [4]:

– Granularity: Fine-grained thread-interleaving implies
that a high number of different threads are active in var-
ious stages of the pipeline at any cycle. Potential pitfalls
with this are:
– Poor single-thread performance; this is of little con-

cern, as the main goal is high overall throughput.
– Low processor utilization when there are insufficient

active threads; this is highly unlikely to be the case
with the application, where there is a huge number
of ERI, and issuing the ERI computations should not
prove problematic because the memory requirements
seem tractable, as discussed in Sect. 6.2.

– Number of threads: because there are a huge number of
threads available, it makes sense to exploit as many of
these as is convenient, thus enjoying the maximum degree
of latency hiding.

The second point leads us to the question: how many threads
per processor? At this stage this remains an open question,
but it is likely that the number of threads will be closely
related to the number of pipeline stages, constrained by logic
space. In order to achieve high memory-system throughput
the number of concurrent outstanding memory references
must exceed the product of bandwidth and memory latency
[42]; this would set the lower limit on the number of active
threads that must be in-flight at any instance in order to make
effective use of the memory system.

There is, however, one danger with a multithreaded archi-
tecture. Efficient precise exception handling is somewhat
complex with heavily multithreaded architectures. With the
target application there may be the need to handle arithmetic
exceptions. At this point it is unclear how critical a factor this
will be.

Although our discussion of multithreading has been con-
ducted within the confines of the ERI Processor specifically,
the architecture cannot be applied to this stage in isolation.
The success of a massively multithreaded processor hinges
on the ability of the rest of the system to keep the processor
fed with threads. Therefore the design of the entire system
should accommodate multithreaded architecture.

Another approach to maximize n̄ERI is to embrace pipe-
lining. Since individual thread performance is not an issue
and a large number of threads is available, a heavily pipelined
architecture would be synergistic with a heavily multithread-
ed architecture, though a large number of pipeline stages and
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large number of concurrent threads both increase the state
storage overhead of the system. Nevertheless, heavy pipe-
lining in the ERI Processor is a means to both increase n̄ERI

as well as increase the clock rate, and therefore decrease t̄ERI.
Contemplating some aspects of the pipelining design-space
[4]:

– Dependency resolution: One may leverage application
specific insight to statically resolve dependencies, or one
may rely on large thread-level parallelism to automati-
cally resolve dependency hazards. In either case, depen-
dencies are effectively resolved statically.

– Number of stages: At the sub-task level there are a mod-
erate number of stages (bP → RaW → bRA → RA →
CU), each of which exhibits differing degrees of paral-
lelism. Each of these stages in turn would be internally
pipelined, thus yielding a very deep overall pipeline.

– Stage sequence: The computation proceeds sequentially,
however the RA and RaW stages introduce a degree of
variability; with the RA stage in particular, handling this
variability may require cycled operation. The downside
of this is that while the RA is cycling, all the stages would
be stalled—which is extremely undesirable with a very
deep pipeline.

Pipeline depth is an important consideration, especially in
light of the proposed cyclic operation of the RA stage (elab-
orated in Sect. 6.4). This architectural aspect requires care,
and will be subject of further work.

6.4 ERI recurrence array

The graphical expression of the recurrence relations com-
putation presented in Fig. 5 exposes the varying size of the
computation as well as the varying level of parallelism—
note the parallelism along the diagonal hyperplane on the 2iR
plane. This variance reveals itself in the computation time of
the entire ERI procedure, and is undesirable because buffers
need to be used to counter the imbalance. Fortunately, as was
illustrated in Sect. 6.3 minimizing t̄ERI – which is desirable
in it’s own right because doing so maximizes Tpipe—also
minimizes the variance. The trade-off would be logic space.

When implemented on a scalar processor the recurrence
relations exhibit O(N ′2) time scaling, where N ′ has a maxi-
mum value of 13. One may reduce the time scaling to O(N ′)
by provisioning O(N ′) processing elements (PEs). Alterna-
tively, if one provisions O(N ′2) PEs, one would still require
O(N ′) processing time per thread, however one would be
able to compute O(N ′) threads concurrently, thus improv-
ing n̄ERI and correspondingly the overall throughput Tpipe.

The “multiple PEs” concept fits within the framework
of virtually every architecture. Some characteristics/require-
ments of the recurrence relations are as follows:

– Limited parallelism—i.e. up to 13-wide.
– There are three functions that each PE may need to per-

form, corresponding to the 2iR, 3iS, and 4iS functions
(see Sect. 4.3).

– The computation time for each of the three functions does
not vary with data, however the 2iR computation is differ-
ent than the 3iS and 4iS computations (though 3iS and
4iS are identical; the only difference being the constants
used). Global sequencing may be used.

– Regular dependencies—each PE has data dependencies
to just two other nearest-neighbor PEs. This is true for all
three functions.

With these traits in mind, the SIMD architecture8 appears to
be a suitable candidate. Contemplating some aspects of the
SIMD design-space [4]:

1. Complete Fine-Grained Parallelism: Granularity in this
context refers to the size of the data-set processed by
each PE. Since the data-set is limited to 13-wide, assign-
ing one data element to each PE is practical.

2. Near-neighbor connectivity: This simple fixed mesh con-
nectivity scheme is sufficient for the recurrence relations.

3. Local Algorithm Autonomy: The PEs need to be able
to switch between the three functions. Also, while the
interconnection links remain unchanged for all three
functions, the direction of data flow does depend on the
function.

This SIMD array proposal is arguably the most novel aspect
of our proposal.

7 Fine-grained parallelism

At the coarse grained thread level there is a huge amount
of parallelism available. The downside to coarse-grained, in
particular thread-level, parallelism is that in general, a mod-
erate amount of state information has to be maintained for
each thread, and keeping the processor fed with threads (as
opposed to the processor being “thread starved” and there-
fore idle) requires large bandwidth. In this sense, fine-grained
parallelism is “cheaper”. Therefore, one ought to consider
the degree of fine-grained parallelism exhibited by a single
thread.

Let us consider just the Preliminary Bootstrap stage in
detail. This stage is invariant to the angular momentum of
the CGTO quartet. This stage requires short-word integer

8 Another apparently likely candidate is the systolic architecture, but
once again being faithful to the design-space approach [4] we accept
the definition that systolic arrays cannot have autonomous PEs (i.e. PEs
cannot execute different functions).
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Fig. 10 Preliminary Bootstrap, available file grained parallelism. The
number of available arithmetic units are varied as indicated on each
of the three subplots, and the execution time (i.e. required cycles) of a
single ERI is simulated

addition, floating point addition, floating point multiplica-
tion, and floating point division. The impact of varying the
number of arithmetic units on the total required computa-
tion time has been estimated through discrete event simula-
tion. Integer addition was omitted from our analysis because
that part of the computation was not the critical section of
the computation; varying the number of integer adders has
no impact whatsoever on the computation time of a single
thread. Our findings are illustrated in Fig. 10.

It may appear premature to draw any conclusions about
fine-grained parallelism based on just one part of the pro-
gram. This is not the case—the limits of fine-grained oper-
ation level parallelism inherent in the program is already
observable. Recall Ahmdal’s speedup law (Eq. 9): there is
an enhanced (parallel) portion of the program and a fixed
(serial) portion of the program. Let the Preliminary Bootstrap
stage be the fixed portion and let the rest of the computation
be the enhanced portion. Even if doubling the number of
each functional unit results in doubling the throughput of the
enhanced portion the overall throughput will still be limited
by the throughput of the serial portion, i.e. the Preliminary
Bootstrap stage.

In addition, this analysis can direct efforts towards design-
ing the architecture of the system by indicating the “path of
steepest descent”. Armed with such plots, one has an idea of
how best to utilise available logic area. This in effect extends
the longevity of the architectural analysis because it provides
a plan for leveraging increasing logic densities.

The main point we wish to emphasise is this: while there
is some fine-grained parallelism inherent in the computation,
one would achieve large speedup only be exploiting thread-
level parallelism.

However, exploiting thread-level parallelism requires a
significant logic investment for state storage and bandwidth.
Therefore, one should not rule out fine-grained parallelism.
Figure 11 reflects the effect of running two threads consec-
utively with the same allocation of functional units. Notice
that the additional thread results in better performance, due
to better utilisation of resources. It is likely that there exists
an ideal balance between thread-level parallelism and opera-
tion-level parallelism, and we will investigate this issue fur-
ther, especially by expanding the simulation to encompass
the entire Rys quadrature computation.

8 Numerical analysis

One factor that has not been considered at all by works on
general-purpose systems is the issue of arithmetic representa-
tion. When constructing a special-purpose computer, arith-
metic representation is an added dimension of flexibility/
customizability. One may specialize the numerical represen-
tation in two ways:

1. Representation system—e.g. one may opt for logarith-
mic arithmetic representation (which has been applied to
the quantum chromodynamics problem [11], for exam-
ple). Other possibilities worthy of consideration include
fixed-point representation, and of course IEEE format
floating-point.

2. Bitwidth optimization for the selected representation,
e.g. increase the number of mantissa bits. In general,
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increasing the bitwidth results in higher precision while
lowering the bithwidth results in smaller datapaths and
consequently we can instantiate more functional units
for a given amount of logic space, resulting in higher
parallelism.

Some initial analysis has been completed on this mat-
ter. Observing some of the value ranges typical of these
computations, it seems that a fixed point implementation is
unsuitable—it has been observed from some run-time num-
ber ranges that it would take a fixed point bitwidth as wide as
200 bits or more to match the precision of 64 bit floating point.
This leaves us with the IEEE floating point format, and loga-
rithmic arithmetic. Recall that with logarithmic arithmetic, in
terms of computational expense/complexity multiplication is
simple and addition is complex. Underwood et al. present a
comparison of floating point and logarithmic arithmetic in
[43], and their analysis specially targets FPGAs. They pre-
scribe a set of operation ratio thresholds (e.g. percentage of
multiplications vs. additions) as an indicator of whether for a
particular workload logarithmic arithmetic is advantageous
over IEEE floating point—as one might expect, a computa-
tion with a large number of multiplications (>70%) is a good
candidate for logarithmic arithmetic. It was found that this is
not the case with the target subset/partition; the ratio is closer
to 50%. Therefore, there seems to be no compelling reason
to strongly favour any numerical representation over stan-
dard IEEE format floating point. Furthermore, sticking with
IEEE floating point has several anciliary advantages such
as the availability of floating point hardware libraries (even
bitwidth parameterisable libraries such as [44]), widespread
availability of stable precision analysis tools, and—at least

in the early stages of development—repeatability of existing
results.

The developers of the ERIC processor observe in [16] that
in order to achieve an accuracy of 0.01 kcal/mol (a commonly
adopted standard), the required numerical precision grows
with the basis set size to compensate for the accumulation
of errors. For a basis size of 10k, a 52-bit floating point rep-
resentation is prescribed [18]. We will build upon the work
in [16] by employing a more robust methodology: interval
arithmetic.9 With interval arithmetic, individual scalar val-
ues are represented by a pair of values: an upper bound and
a lower bound. As floating-point roundoff occurs, there is
some uncertainty about the computed value; this uncertainty
is captured by the upper and lower bounds. These ranges are
propagated through the computation. Interval arithmetic is
expensive; we do not propose that the processor have inter-
val arithmetic capabilities. Rather, we propose to use inter-
val arithmetic “offline” as a design-space exploration tool,
to experiment with different arithmetic unit configurations.
This general approach has proven to be successful in the past,
as evidenced by the work of Luk et al. [45,46].

The work presented in [16] is very complete in the sense
that the error is propagated all the way to the evaluation of
the energy value. In the present work, however, we will only
consider the error propagation within the partition of interest
(i.e. only up till G-matrix generation). Our aim is to inves-
tigate the possibility of mixing different levels of arithmetic
precision in the hopes of yielding better result precision (i.e.
tighter intervals) with modest resource expense.

Our baseline is IEEE double precision (64-bit) floating
point. The basis set and density matrix values are assumed
to be exact (i.e. their interval width is zero), and the entire
candidate partition is instrumented with interval arithmetic.
The intervals of each G-matrix element may then be obser-
ved. This analysis was performed with a single Restricted-
HF iteration (only up to the computation of the G-matrix)
on a H2 O molecule with 6−31G∗∗ basis. Our findings are
summarized in Table 4. These results show that while the
resulting precision will be very close to that of the weakest
precision operations in the overall computation, it is possi-
ble to improve the overall precision by “promoting” certain
sensitive operations to greater levels of precision.

Our next step would be to introduce completely arbitrary
bitwidths so that we may experimentally observe the impact
of various non-standard encodings; for instance instead of
standard double precision 64-bit encoding, one may utilise a

9 We are aware that error bounds calculated with interval arithmetic are
sometimes pessimistic; in the near future we will use affine arithmetic
instead, as it is regarded as being a slightly more reasonable (and not
overly pessimistic) method of computing error bounds. The initial anal-
ysis was conducted with interval arithmetic due to our familiarity with
and confidence in an existing library.
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Table 4 Interval widths for different arithmetic configurations

Arithmetic configuration Mean width Max width

All single precision 1.267 D-4 1.259 D-3

All double precision 1.810 D-13 2.089 D-12

Mostly double precision, 8.300 D-5 1.144 D-3

but with single precision

Recurrence array

Mostly single precision, 6.64 D-5 5.360 D-4

but with double precision

Recurrence array

non-standard 70-bit encoding—the slight boost in precision
may prove vital for large-scale computations.

9 Future work

We have indicated many points for immediate future inves-
tigation in the preceding sections, and most of these were of
the ilk of detailed analysis and specification, or expanding
our analysis to cover additional areas of interest. However,
there are other aspects of our proposal that require the kind
of “big picture” analysis that we have presented in this paper.

Both the ERI Dispatch (ERID) and G-matrix Contrac-
tion (GmC) units need in-depth treatment. The GmC unit
may be required to support variable data arrival times due to
imbalances in the individual ERI computation—this seems
to suggest that dataflow architectural characteristics would
be desirable, though we will not commit to that conclusion
without further investigation. Part of our desire to minimize
t̄ERI is due to the reasoning that this would reduce the vari-
ance in the computation time of individual ERI, so there is
still the unlikely possibility that we will elect (after initial
logic area estimates are obtained) to dedicate enough logic
to the individual ERI pipelines to completely eliminate the
imbalances, thus allowing a SIMD GmC unit.

As we mentioned earlier, cut-offs and symmetries may
be exploited to reduce the number of ERI to be computed.
Such optimizations may be made in the inner loop of the
code depicted in Fig. 3. Similar functionality ought to be
built into the hardware accelerator. This functionality is not
overly complex; checking for cutoff conditions requires
Schwarz inequality checking. This checking can be imple-
mented in the ERI Dispatch unit in Fig. 7. Depending on the
nature of the eventual solution, one could perform condition
checking before the ERI computation is issued, or alterna-
tively one may perform the checking while the ERI is being
computed and then flush the pipeline if the ERI is deemed
redundant and/or negligible.

10 Conclusion

From the perspective of physical significance, electron repul-
sion integrals and Coulombic charge repulsion may have
some similarity, however from the perspective of computa-
tion they are very different beasts. ERI computation
algorithms are complex, making the task of designing a spe-
cial-purpose processor far more challenging. Fortunately, the
emergence of System Level Design tools greatly eases the
development process, making incremental architecture
exploration and design possible, while also producing
reasonably high quality hardware layout.

We have conducted a qualitative architectural analysis of
the Hartree-Fock method (and the bottleneck ERI computa-
tion). An overview of our architectural mapping is presented
in Fig. 12. We have identified that the massive thread-level
parallelism inherent in the computation, combined with sig-
nificant pipeline data-dependency hazards, should be exploi-
ted through fine-grained thread-interleaving. Specifically
regarding the individual ERI pipelines, we have observed
that pipelining is apparent at the high-level subtask layer of
abstraction and because (1) one may eliminate data depen-
dency hazards and (2) one may employ massive fine-grained
multithreading, one may employ deep pipelines, constrained

ASP Architecture

Top-level Multithreaded ERI Pipeline

Shared-Memory MIMD

NUMA Interconnect

Fine-grained Thread Interleaving Large Thread-count

Shared Multi-word Bus Dedicated Bus

Top-level Recurrence Array

Pipelining SIMD

Static Dependancy Resolution Pipeline Layout

Many stages Sequential and Cycled units

Complete Fine-Grained Parallelism 2D Mesh Nearest Neighbour Connectivity Local Algorithm Autonomy

Fig. 12 Top-level Design-Space. Shaded boxes indicate stages/components, rounded boxes indicate architectural classes and ellipses are chosen
design characteristics corresponding to the architecture. This is based on the design-space approach espoused in [4]
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by logic space. We have prescribed a set of architectural spec-
ifications for the Recurrence Array SIMD processor, the most
novel aspect of our proposal.

We demonstrated the approach we will employ to carry out
detailed simulation of the system to parametrically optimize
our design, and in doing so we have indicated the possible
gains that may be obtained by leveraging fine-grained paral-
lelism. Our analysis supports the idea of exploiting both fine-
grained and coarse-grained parallelism, towards the ends of
achieving a balance of high speed and practical implementa-
tion.

Finally we demonstrated that there are precision gains that
one may obtain by tinkering with the precision of floating
point functional units, towards the ends of pursuing larger
capability computation. Alternatively, one may relax pre-
cision specification to allow the instantiation of a greater
number of functional units and therefore provide a larger
computing capacity.

Armed with this “roadmap” of the various components
of the computation and various analysis and design methods,
we may confidently pursue detailed specification, design, and
implementation of the various sub-systems. Furthermore, our
analysis has indicated that a “one-size-fits-all” computer
architecture cannot optimally address the varied requirements
and characteristics of the complete computation. Our appli-
cation-specific approach allows us to produce a computer
that is well-matched to the specific requirements of the
Hartree–Fock method, and in doing so provide the infrastruc-
ture for higher-capacity and higher-capability computations.
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